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INTRODUCTION

Asthma is a common chronic inflammatory
disorder of the lungs characterized by variable
and recurring symptoms, reversible airflow ob-
struction and bronchospasm (Mintegi et al.
2018). It is well established that a combination
of environmental and genetic factors is consid-
ered to be responsible for asthma, despite the
exact explanations for rapidly changes in preva-
lence are still unknown (Torgerson et al. 2011).
Furthermore, the epigenome of asthma could be
altered by specific environmental exposures
which increase its risk and severity, and the
changes of epigenomic induced by environ-
ments lead to persistent changes in gene ex-
pression of asthma patients (Yang et al. 2017).
Meanwhile, asthma exacerbations are a leading
cause of hospitalisation for children in devel-
oped countries (Bizzintino et al. 2011), since chil-

dren are especially vulnerable to airborne pollu-
tion because of their narrower airways and longer
time of their exposure to air pollutants leading to
their more air per pound of body weight than
adults (Gasana et al. 2012). For instance, in ute-
ro exposure to tobacco smoke was related to
childhood asthma, and this exposure would al-
ter the expression of gene  via DNA methylation
(Ferrante et al. 2014).

DNA methylation is a result of the covalent
addition of a methyl group at the 52  position of
the pyrimidine ring of cytosines within context
of CpG dinucleotides (Jimenez-Useche et al.
2014), and has a variety of important functions,
including control of gene expression, genomic
imprinting, cellular differentiation, and X-chro-
mosome inactivation (Jeltsch and Jurkowska
2014). What’s more, DNA methylation can be
stable and easily determined qualitatively or
quantitatively. Hence it has been taken as the
most potential diagnostic marker for early  can-
cer detection (Zhao et al. 2014), related copy
number variations (Jiang et al. 2010), SNP/muta-
tion (Guo et al. 2014), and gene/microRNA ex-
pression (Zhu and Yao 2009). In the past de-
cades, a few number of researchers paid atten-
tion to the abnormal DNA methylations in pro-
gression of asthma. Stefanowicz et al. (2012) high-
lighted the importance of understanding DNA
methylation in the epithelium when studying the
epithelial contribution to asthma (Stefanowicz
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et al. 2012). Most important, Yang et al (2015)
demonstrated that allergic asthma was associat-
ed with DNA methylation marks in specific
genes, which indicated epigenetic changes might
be critical for establishing the immune related to
children with asthma (Yang et al. 2015). Although
great efforts have been made, to the best of
knowledge, the molecular mechanisms underly-
ing asthma are still not clear.

Objective

In the present study, the aim of the research
is to extract differentially methylated genes be-
tween allergic asthma patients and healthy sub-
jects dependent on the DNA methylation data.
Subsequently, a series of functional enrichment
analyses were conducted on these differentially
methylated genes. Ultimately, a protein-protein
interaction network (PPIN) was constructed and
then hub genes were identified. These results
might reveal the potential roles of epigenetic
mechanisms in children with allergic asthma.

METHODOLOGY

DNA Methylation Data Preparation and
Preprocessing

In the present study, DNA methylation data
with accessing number GSE40576 (Yang et al.
2015) for childhood with allergic asthma were
collected from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) at the
National Center for Biotechnology Information
(NCBI). Herein, the GEO database is regarded as
an international public repository for high-
throughput microarray and next-generation se-
quence functional genomic data sets (Barrett et
al. 2011). GSE40576 was comprised of 194 chil-
dren including 97 allergic asthma cases and 97
healthy controls, and was deposited on the Illu-
mina Human Methylation450 BeadChip (Illumi-
na, California, USA). There were 65,535 CpG sits
in the raw DNA methylation data.

Prior to the subsequent analyses, standard
preprocessing methods, quality control and nor-
malization, for the raw 65,535 CpG sits were con-
ducted. First of all, probes that satisfied with
any one of four conditions were removed: the
distance from CpG to SNP < 2; minimum allelic
frequency < 0.05; probes on X and Y chromo-
somes; and cross-hybridising probes. After-

wards, the filtrated methylation data were ana-
lyzed and normalized using the beta-mixture
quantile normalization method implemented in
Lumi package (http://bioconductor.org/packag-
es/release/bioc/html/lumi.html) (Du et al. 2010).
The beta-mixture quantile algorithm improves the
robustness of the normalization procedure and
reduces the technical variation and bias (Te-
schendorff et al. 2013). In consequence, total
55,102 CpG sits were reserved in the DNA meth-
ylation data for in-depth exploitation.

Differentially Methylated Genes Screen

During this step, differentially methylated
CpG sites between allergic asthma and healthy
controls were identified by t-test. Before it, a
methylation beta value (percent methylation
changes) was computed for each CpG site in
asthma group and healthy group, respectively.
To the best our knowledge, methylation at indi-
vidual CpG site is described as a methylation
beta value, which is usually used as a quantita-
tive measure of methylation for each CpG site
with range from 0 to 1 (Wu et al. 2018). A beta
value = 0 referred that the CpG was no methyla-
tion, while 1 meant that the CpG was completely
methylated. Of note, the beta value for a CpG in
different samples across allergic asthma patients
and healthy controls were different. Hence, the
mean beta value was defined as the value for
this CpG in a specific group, and its absolute
difference between two groups was also count-
ed, naming score for the CpG. Ultimately, CpG
sites which met to the thresholds P < 0.05 and
Score > 0.05 were considered to be differentially
methylated. Besides, genes covered using dif-
ferentially methylated CpG sites were denoted
as differentially methylated genes for allergic
asthma cases.

Gene Ontology (GO) Enrichment Analysis

As mentioned above, to further investigate
significant biological functions for differentially
methylated genes of allergic asthma, GO func-
tional enrichment analysis were conducted uti-
lizing the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/). Specifically, GO analysis has
been widely utilized as functional enrichment
researches for large-scale genes (Ashburner et
al. 2000), and produces a controlled, dynamic
vocabulary even as knowledge that effects of
gene and protein in cells are changing and accu-
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mulating (Ashburner et al. 2000). Besides, the
DAVID offers functional annotations for re-
searchers to understand biological meaning be-
hind large list of genes (Huang da et al. 2009).
The expression analysis systematic explored
(EASE) test implemented in DAVID was used to
detect the significant categories, since the EASE
indicates biological processes and molecular
functions unique to each category (Wang and
Simon 2011). Then, P values were corrected us-
ing false discovery rate (FDR) using Benjamini
and Hochberg method (Benjamini et al. 2001). In
addition, the threshold of minimum number of
genes (count) for the corresponding term > 10
was regarded as statistically significant for a
category. Functional GO terms with P < 0.001
and gene count > 10 were regarded as statisti-
cally significant for allergic asthma compared
with healthy subjects.

Pathway Enrichment Analysis

The Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) enrichment analysis was select-
ed to identify significant gene sets enriched by
differentially methylated genes using the online
tool DAVID. Here, KEGG is considered as a
knowledge database for systematic analysis of
gene functions, which links genomic informa-
tion with higher order functional information
(Kanehisa and Goto 2000). KEGG pathways with
P value <0.01 were chosen to be significant be-
tween children with allergic asthma and healthy
subjects based on the EASE test applied in the
DAVID. These P values were also adjusted by
FDR using Benjamini and Hochberg method
(Benjamini et al. 2001). On the basis of the cut-
off P < 0.01 and count > 10, significant pathways
for allergic asthma were determined.

PPIN Construction and Topological Centrality
Analysis

After identifying significant gene sets en-
riched by large scale of differentially methylated
genes, the researchers focused on investigat-
ing the interactions between any two of them.
Thus, a PPIN was constructed based on the
Search Tool for the Retrieval of Interacting
Genes/proteins (STRING, http://string.embl.de)
database. In particular, the STRING database
offers an important assessment and integration
of PPIs, containing indirect and direct associa-
tions (Szklarczyk et al. 2015). Subsequently, to
assess the significance of an individual gene in

the PPIN, topological centrality analysis was
carried out utilizing the degree index. Degree
quantifies the local topology of each node in a
network through summarizing the number of its
adjacent nodes (Haythornthwaite 1996). The
genes at the top of degree distribution (e” 99%
quantile) in the statistically significant perturbed
networks were regarded as hub genes. Further-
more, the molecular complexes for hub differen-
tially methylated genes was extracted from the
PPIN by the molecular complex detection
(MCODE) algorithm, a theoretically cluster al-
gorithm, which chooses densely connected re-
gions in large complex networks (Bader and
Hogue 2003). Finally, the cluster of PPIN was
visualized using Cytoscape (http://www. cy-
toscape. org/). Here, Cytoscape, a free software
package, can be used for modeling, and analyz-
ing and visualizing the integration of bimolecu-
lar interaction networks with high-throughput
expression data (Smoot et al. 2011).

RESULTS

Differentially Methylated Genes

In this paper, there were 65,535 CpG sits in
GSE40576 at the time of download. After per-
forming quality control and normalization, a to-
tal of 55,102 CpG sites were left in the methyla-
tion data of 194 samples for subsequent analy-
ses. Afterwards, a score was computed for each
CpG site dependent on the beta value (percent-
age methylation value), and a t-test was used to
determine the CpG sites that differentially meth-
ylated across allergic asthma cases and healthy
controls. A volcano plot clarifying the distribu-
tion of the 55,102 analyzed methylated CpG sites
was drew for allergic asthma as shown in Figure
1. When setting the criteria as P < 0.05 and Score
> 0.05, 8,117 CpG sites (representing 3,608 genes)
were differentially methylated for allergic asthma
patients compared with healthy controls, includ-
ing 1,513 hyper-methylated CpG sites (covering
658 genes) and 6,604 hypo-methylated CpG sites
(referring 2950 genes). What’s more, to improve
the statistical power of differentially methylated
CpG sites and delete the amount of non-variable
CpG sites, two conditions were used to refine
them, one was that the beta values for the CpG
sites in specific sample of any group must ranged
from 0.2 to 0.8; and the other condition required
that the score for a CpG site should be higher
than 0.2. As a result, 1,747 differentially methy-
lated CpG sites (covering 1,204 genes) were de-
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tected. Particular, 489 CpG sites (containing 384
genes) were hyper-methylated, while 1,258 CpG
sites (covering 820 genes) were hypo-methylat-
ed. Hereinafter, the genes covered by differen-
tially methylated CpG sites were defined as dif-
ferentially methylated genes. Hence, the re-
searchers obtained total 1,204 differentially me-
thylated genes (384 hyper-methylated and 820
hypo-methylated) between children with and
without allergic asthma for further study.

Significant GO Terms for Differentially
Methylated Genes

To better understand the biological functions
of the differentially methylated genes, differen-
tially hyper-methylated and hypo-methylated
were annotated using GO annotation in the DAV-
ID, respectively. Most important, GO terms with
count > 10 and P < 0.001 were thought as statisti-
cally significant for allergic asthma children. Con-
sequently, 8 and 17 significant GO terms were
obtained for differentially hyper-methylated and
hypo-methylated genes, respectively, as shown
in Table 1. Of which, positive regulation of tran-
scription from RNA polymerase II promoter (P =

Table 1: Significant GO terms with P < 0.01 and count > 10

Type Term GO term Count P Value

hyper- GO:0045944 positive regulation of transcription from RNA 23 5.99E-08
methylated   polymerase II promoter

GO:0006915 apoptotic process 14 4.57E-06
GO:0006366 transcription from RNA polymerase II promoter 13 6.38E-05
GO:0045893 positive regulation of transcription, DNA-templated 13 6.61E-05
GO:0010628 positive regulation of gene expression 18 4.31E-04
GO:0042110 T cell activation 13 5.09E-04
GO:0007165 signal transduction 14 5.73E-04
GO:0006959 humoral immune response 13 6.65E-04

hypo- GO:0000122 negative regulation of transcription from RNA 20 8.33E-09
methylated   polymerase II promoter

GO:0035023 regulation of Rho protein signal transduction 40 1.32E-08
GO:0006351 transcription, DNA-templated 84 6.39E-08
GO:0007155 cell adhesion 26 4.74E-07
GO:0006366 transcription from RNA polymerase II promoter 28 8.03E-07
GO:0090002 establishment of protein localization to plasma 30 9.45E-07

  membrane
GO:0043547 positive regulation of GTPase activity 22 1.01E-05
GO:0030324 lung development 18 1.59E-05
GO:0048538 thymus development 14 2.28E-05
GO:0006325 chromatin organization 16 3.41E-05
GO:0007275 multicellular organism development 28 4.47E-05
GO:0035556 intracellular signal transduction 23 7.79E-05
GO:0001558 regulation of cell growth 18 3.87E-04
GO:0007155 cell adhesion 26 5.63E-04
GO:0035556 intracellular signal transduction 23 7.84E-04
GO:0008285 negative regulation of cell proliferation 22 8.21E-04
GO:0043065 positive regulation of apoptotic process 16 9.79E-04

Fig. 1. Volcano plot exhibiting methylation data of
children with allergic asthma and healthy subjects.
X axis stood for the mean methylation differences
between allergic asthma and healthy controls. Y
axis represented the log transformed P values
Source: Author
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5.99E-08, count = 23), apoptotic process (P = 4.57E-
06, count = 14) and transcription from RNA poly-
merase II promoter (P = 6.38E-05, count = 13) were
the most three significant gene sets for 384 differ-
entially hyper-methylated genes of allergic asth-
ma children. Meanwhile, negative regulation of
transcription from RNA polymerase II promoter
(P = 8.33E-09, count = 20) was the most signifi-
cant terms for 820 differentially hypo-methylated
genes, and the next two were regulation of Rho
protein signal transduction (P = 1.32E-08, count =
40) and transcription, DNA-templated (P = 6.39E-
08, count = 84). Interestingly, several GO terms
for two kinds of genes (hyper- and hypo-methy-
lated) were corresponding, such as negative reg-
ulation of transcription from RNA polymerase II
promoter and positive regulation of transcription
from RNA polymerase II promoter.

Significant Pathways for Differentially
Methylated Genes

As mentioned above, KEGG pathway enrich-
ment analysis was carried out for differentially
hyper-methylated and hypo-methylated genes,
respectively. When setting the criteria as P <
0.01 and count > 10, a total of 9 and 15 signifi-
cant pathways were explored for the two types
of differentially methylated genes, respectively.
In order to illustrate these pathways more di-
rectly and clearly, a graph for the first third of
significant pathways dependent on their P val-
ues and count values was visualized in Figure 2.
Differentially hyper-methylated genes were re-
markably enriched in transmembrane receptor
protein tyrosine kinase activity (P = 3.53E-04,
count = 11), transmembrane receptor protein ki-

nase activity (P = 6.29E-03, count = 14) and
growth factor binding (P = 7.99E-03, count = 18).
For differentially hypo-methylated genes, 5 most
significant pathways were mapped to the figure,
of which transcriptional activator activity, RNA
polymerase II transcription regulatory region se-
quence-specific binding (P = 6.54E-06, count =
58) was the most significant one in allergic asth-
ma children compared with healthy subjects. Par-
ticularly, 6 of 8 significant gene sets were corre-
lated to binding, which indicated the importance
of  binding in the progression of allergic asthma.

Hub Differentially Methylated Genes

For purpose of revealing interactions and
connections between any two of differentially
methylated genes, hypo-methylated genes and
PPINs for differentially hyper-methylated genes
were constructed, respectively. For 384 up-me-
thylated genes, 304 nodes involved in 1,587 edg-
es were mapped to the PPIN for hyper-methylat-
ed condition. However, 734 of 820 differentially
hypo-methylated genes were deposited in the
PPIN for them. By conducting the topological
degree centrality analysis, total 3 hub hyper-
methylated genes (LSM2, CD247 and CPSF1)
and 7 hub hypo-methylated genes (RAC1,
ADCY3, GNA12, GNAI2, TRIO, EIF4G1 and
CDKN1A) were obtained for allergic asthma.
Afterwards, clusters or sub-networks for hub
methylated genes were captured from their PPINs
through the MCODE algorithm. Unfortunately,
the 3 hub differentially hyper-methylated genes
couldn’t form a cluster. At the same time, 5 of the
7 hub differentially hypo-methylated genes con-
structed a cluster, including RAC1, ADCY3,

transmembrane receptor protein tryosine kinase activity

transmembrane receptor protein kinase activity

growth factor binding

transcriptional activator activity, RNA polymerase II transcription regulatory region sequence-
specific binding

transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-
specific binding

transcription factor activity, RNA polymerase II core promoter proximal region sequence-
specific binding

RNA polymerase II core promoter proximal region sequence-specific DNA binding

core promoter proximal region sequence-specific DNA binding
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Fig. 2. The first third of significant pathways for differentially hyper (up) - and hypo (down) - methylated
genes of allergic asthma children
Source: Author
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GNA12, GNAI2 and TRIO, as described in Fig-
ure 3. This result might indicate that good corre-
lations presented among the 5 hub differentially
hypo-methylated genes.

DISCUSSION

The analysis of DNA methylation data has
been widely applied to investigate the abnor-
mally methylated genes associated with allergic
asthma children, and enhance the feasibility and
confidence of identifying targets for therapeu-
tic strategies. Hence, in this study, the molecu-
lar mechanism of allergic asthma was uncovered
by bioinformatics methods, containing identifi-
cation of differentially methylation genes, GO
functional and KEGG pathway enrichment anal-

ysis of differentially methylated genes, construc-
tion of PPIN based on differentially methylated
genes and exploration of hub differentially me-
thylated genes. Based on these results, the po-
tential molecular mechanism underlying allergic
asthma was inferred.

Particularly, results of differentially methyla-
tion analysis showed that a total of 1,204 differ-
entially methylated genes between allergic asth-
ma and healthy subjects were obtained, of which
384 were hyper-methylated and 820 were hypo-
methylated. Furthermore, based on topological
centrality analysis for PPINs constructed on
hyper- and hypo-methylated genes, 3 and 7 hub
differentially hyper- and hypo-methylated genes
were extracted, respectively. Taking RAC1 as an
example, RAC1 (ras-related C3 botulinum toxin

Fig. 3. A cluster extracted for the protein-protein interaction network of differentially hypo-methylated
genes. Nodes stood for genes, and the edges represented the interactions between any two genes
Source: Author
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substrate 1) is a small signaling G protein that is
more specifically a GTPase, as well as a member
of the Rac subfamily of the family Rho family of
GTPases. Specifically, Rho family GTPases ad-
justs various cell functions mainly including pro-
liferation, motility, apoptosis, redox signaling,
and gene transcription (Riching and Keely 2015).
It had been suggested that deletion of RAC1
possessed modest effects on T and B cell func-
tion and development, and RAC1 had distinct
functions in hematopoietic cells where it was
critical for proliferation and entry into cell cycle
(Guo et al. 2008; Saci et al. 2011). If RAC1 com-
bined with activators of transcription and signal
transducers as functional binding partners, it
would play critical roles in airway smooth mus-
cle cells proliferation downstream of growth fac-
tor stimulation in asthma (Simeone-Penney et al.
2008). Above all, targeting RAC1  can be a po-
tential therapeutic method for people with se-
vere asthma and airway remodeling.

By accessing the GO functional enrichment
analysis for differentially methylated genes, pos-
itive regulation of transcription from RNA poly-
merase II promoter was the most significant
terms for differentially hyper-methylated genes,
whereas the negative regulation of transcription
from RNA polymerase II promoter was the most
significant one for differentially hypo-methylat-
ed genes. Interestingly, in this study, the results
demonstrated that the two GO terms were corre-
sponding, just like the hyper- and hypo-methy-
lated genes. Meanwhile, RNA polymerase II tran-
scription regulatory region sequence-specific
binding was significant pathways for differen-
tially hypo-methylated genes, and the other sig-
nificant pathways no matter for hyper- or hypo-
methylated genes were associated with bind-
ing. RNA polymerase II, the most studied type
of RNA polymerase, catalyzes the transcription
of DNA to synthesize precursors of mRNA and
most snRNA and microRNA, which requires
multiple transcription factors to bind to upstream
gene promoters and begin transcription (Sains-
bury et al. 2015; Wang et al. 2018).

CONCLUSION

In summary, the researchers have identified
hub differentially hyper- and hypo-methylated
genes and their enriched significant GO terms
and pathways. The findings might provide po-
tential targets for allergic asthma diagnosis and

treatment, and shed new lights on revealing
molecular mechanism underlying this disease.

RECOMMENDATIONS

Results from the current study will provide
the groundwork for the understanding of allergic
asthma pathogenesis and provide potential tar-
gets for allergic asthma diagnosis and treatment.
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